Three positional isomers of substituted triphenylmethanes from reactions of trityl anion with 1 -acyl-2,2-dimethylaziridines ${ }^{1}$

Jürgen Werry, Pen-Yuan Lin, Petros Assithianakis and Helmut Stamm*
Faculty of Pharmacy, University of Heidelberg, Neuenheimer Feld 346, D-69120 Heidelberg, Germany

Ring opening of aziridines $4 a-d$ in reactions with trityl anion Tr^{-}proceeds exclusively by cleavage of the NCMe_{2} bond. Substitution of the benzylic carbon of Tr^{-}leads to 'central' products 10a-d in yields of $0-5 \%$. This is ascribed to an $S_{\mathrm{N}} 2$ reaction with borderline character, as is well known from reactions of aziridines $4 a-d$ with other nucleophiles. All remaining ring-opening reactions result from single-electron transfer (SET). This is direct SET from Tr^{-}to aziridines $4 \mathrm{a}-\mathrm{c}$. For compound 4d (acyl = cinnamoyl), the SET reaction is of the innersphere type and proceeds via Michael addition, at least in part. Homolytic ring opening of the generated aziridino ketyls 5 forms the tertiary amidatoalkyl radicals 6. Main reaction of radicals $6 a-c$ is transfer of a hydrogen atom from one of its two methyl groups to the generated trityl radical $\mathbf{T r}^{\prime}$. Methallylamides 7 and enamides 8 are the final products. ortho-Substituted triphenylmethanes 12 and/or its olefinic precursors 13 arise in $\sim 20 \%$ yield. A mechanism for the formation of these unique products is proposed that first converts the radicals 6 into the corresponding carbanions 16 which undergo an $S_{\mathrm{N}} 2^{\prime}$ reaction with one allylic system $\mathrm{TrCHCH}=\mathrm{CH}^{*}$ of the dimer 14 of Tr^{*}. The leaving group Tr^{-}is eliminated from this partial structure when carbanions 16 attack the marked carbon converting it finally into the substituted ortho carbon of compounds 12. Addition of radicals 6 to Tr^{-}is probably the way to the para-substituted triphenylmethanes 11 , which arise in yields of only 0 1% from aziridines $4 \mathrm{a}, \mathrm{b}(\mathrm{acyl}=4$-benzoyl, pivaloyl). Higher yields of para-substituted compounds 11 are obtained from aziridines $4 \mathrm{c}(\mathrm{acyl}=4$-phenylbenzoyl) and 4 d . This is ascribed, at least for substrate $4 c$, to a chain reaction because ketyl 5 c must be formed more rapidly than ketyls $5 \mathrm{a}, \mathrm{b}$. A substantial part of radical $6 \mathbf{d}$ cyclizes, ending up as the triphenylmethane compound 26 that carries a pyrrolidone ring in the para position.

Introduction

A preliminary paper ${ }^{2}$ reported on single-electron transfer (SET) from trityl anion Tr^{-}to the acyl group of 1-acyl-2,2dimethylaziridines 4 (Scheme 1). The generated aziridino ketyls 5 undergo homolytic ring opening to form the tertiary amidatoalkyl radicals 6. The most interesting product was seemingly formed by combination of radical 6 with one ortho position of trityl radical Tr°. We now propose a mechanistic modification of this surprising 'ortho combination' and we add further results and new products to the previous short report.
Redox potentials in the literature range from -0.73 V to -0.96 V for the carbanion ${ }^{3}$ and from -2.2 V to -3 V for N -acylaziridines ${ }^{4}$ with -2.5 V for 4 a and -2.2 V for 4 d . The difference between the reactants is so large that one needs not bother about conversions that relate all these measurements to a common basis (compare ref. 3). The initial SET step is clearly endergonic and requires rapid exergonic follow-up reactions as well as retardations of competing reactions, especially of nucleophilic ring opening. The latter is the only reaction with Tr^{-}when the aziridine ring carries no substituents ${ }^{5}$ or one methyl group only. ${ }^{6}$ With two geminal methyl groups, as in compounds $\mathbf{4 a - d}$, other nucleophiles strongly prefer to attack the tertiary carbon, and this results in abnormal ring opening. ${ }^{7}$ So, the reported ${ }^{2}$ by-products 10 of the SET reaction with Tr^{-} may possibly arise from a competing borderline $S_{\mathrm{N}} 2$ process.

Results and discussion

The results of the reactions of Tr^{-}with activated 2,2dimethylaziridines are listed in Table 1. Solutions of Tr^{-}in tetrahydrofuran (THF) were generated from triphenylmethane either with BuLi (hexane, low temperature) or with sodium naphthalenide.

Scheme 1

The reaction of the sulfonylaziridine 1 (run 1) is included in Table 1 to illustrate the fact that the rates of possible reactions with Tr^{-}, SET and nucleophilic ring opening, have the same order of magnitude for activated 2,2-dimethylaziridines. Compound 1 has a better leaving group than do acyl compounds 4a-d. This allows a classical $S_{\mathrm{N}} 2$ reaction of compound 1 , i.e. normal ring opening to form compound 2 as main product. No isomer of product 2 was detected in run 1 . However, the poor material balance may point to some SET reaction that cleaves the $\mathrm{N}-\mathrm{S}$ bond. ${ }^{8}$ The products formed from the two fragments of substrate 1 easily escape detection. ${ }^{8}$ So, it is likely that the two competing reactions have similar rates with compound 1. The poorer leaving groups of acylaziridines 4a-d

Table 1 Reactions of trityl anion Tr^{-}with aziridines 1 and $4 \mathrm{a}-\mathrm{d}$ in THF^{a}

Run	Reagents (mmol)				Time ${ }^{\text {b }}$	Yields ${ }^{\text {c }}$ of products						
	TrH	BuLi	$\mathrm{Na}^{\text {d }}$	1,4		7	8	9	10	11	12	Other products
1	12.5	10		1 (5)	2 days							582, 113
2	30	20		4 a (10)	16 days	$307 \mathbf{7}$	27 8a		(5) 10a	(1) $11 \mathbf{a}$	21 12a	
3	30	20		4a (10)	18 days	107 a	54 8a	tr 9a			24 12a	
$4^{\text {e }}$	11	10		$4 \mathrm{a}(8.5)^{\text {e }}$	30 min	(64) 7a			1 10a	tr 11a		$2313 a^{f}$
5	40		20	4 a (10)	10 days	(23) 7 a	(39) 8a	(3) 9 a	4 10a		22 12a	
6	40		20	4a (10)	18 days		$48 \mathbf{8 a}$	139 a	(6) 10 a		20 12a	
7	20		7.5	4 a (5)	13 days		$38 \mathbf{8 a}$	159 a	210 a		20 12a	
8^{9}	20		7.5	4a (5)	14 days ${ }^{9}$	(55) 7a	(4) 8 a	(6) 9 a	5 10a		26 12a	
9	25	20		4b (10)	6 days	557 b	(4) 8 b			(0.2) 11 b	22 12b	
10	12.5	10		$4 \mathrm{~b}(5)^{\boldsymbol{n}}$	15 min	$\begin{gathered} (38) 7 \mathrm{~b} \\ 257 \mathrm{c} \end{gathered}$			310 b		tr 12b	$\begin{aligned} & \text { (13) 13b, (2) } 20, \\ & \text { (3) } 21,722 \end{aligned}$
11	12.5	10		4c (5)	6 days	(6) 7 d	(5) 8 c	(2) 9c	4 10c	19 11c	(6) 12 c	(3) 13 c
12	12.5	10		4d (5)	8 days	(14) 7d			tr 10d	(16) 11d	(3) 12d	(3) 14, (38) 26
13	12.5	10		4d (5)	$30 \mathrm{~min}^{\text {i }}$			(1) 9 d	(1) 10d	(8) 11 dd	(0.2) 12d	$\begin{aligned} & 6 \alpha-26,5 \beta-26, \\ & \text { (3) } 27 \text {, (2) } 28 \text {, } \\ & \text { (3) } 29 \end{aligned}$

${ }^{a} \mathrm{Tr}^{-}$was generated in THF ($50-100 \mathrm{~cm}^{3}$). Substrate 2 or 4, dissolved in THF ($10-20 \mathrm{~cm}^{3}, 50 \mathrm{~cm}^{3}$ in run 4), was added dropwise within 2-5 min or (run 10) rapidly injected. ${ }^{b}$ The reactions were quenched with acetic acid except for run 13 . ${ }^{c}$ Yields in parentheses are from ${ }^{1} \mathrm{H}$ NMR analysis. Products found in traces (tr) were identified by ${ }^{1} \mathrm{H}$ NMR signals of mixtures. ${ }^{d}$ Together with an equivalent amount of naphthalene. ${ }^{e}$ The red colour of the Tr^{-}solution changed to yellow when compound $\mathbf{4 a}(8.5 \mathrm{mmol})$ was added. The yields of run 4 are based on 69% conversion of acylaziridine 4 a since 31% of starting material 4a was recovered. ${ }^{f}$ See text. ${ }^{g}$ The reaction was started under cooling with ice-NaCl. ${ }^{h}$ Rapidly injected. ${ }^{i}$ The reaction with Tr^{-}was quenched by dropwise addition of a solution of $\mathrm{TrCl}(10 \mathrm{mmol})$ in $\mathrm{THF}\left(17 \mathrm{~cm}^{3}\right)$. Discolouration of the red solution required $5 \mathrm{~cm}^{3}$. Stirring under nitrogen was continued for 8 days. TrOH (2.9 mmol) was detected by chromatography.
must slow down nucleophilic ring opening and force the $S_{\mathrm{N}} 2$ borderline mechanism that displaces the nitrogen from the tertiary carbon. ${ }^{7}$ Assuming similar SET rates for compound 1 and 4 the small yields of products 10 in Table 1 are compatible with a non-SET path. The methallylamide 3 in run 1 is probably an artifact of non-converted compound 1 since the easily recognizable ${ }^{1} \mathrm{H}$ NMR signals of compound 3 were not detected in the crude reaction mixture.

In contrast to run 1, run 2 (and the other runs of Table 1) proceeded nearly exclusively via SET. Main products were methallylamide 7a and the isomeric enamide 8a. A separate experiment showed that enamide 8a arises from methallylamide $7 \mathbf{a}$ in a reaction of their amide anions. Similar experiments established the isomerization of methallylamides $7 \mathbf{b}, \mathbf{c}$ to enamides $\mathbf{8 b}, \mathbf{c}$ in other runs. The progress of this isomerization is clearly recognized from a comparison of run 2 with run 3 and 4. The isomerizations in Table 1 show that the methallylamides 7 are not artifacts of unchanged aziridines 4. The nitranions of
compounds 7 can only arise by hydrogen transfer from radical anions 6 to Tr°. The enamides 8 are sensitive to hydrolytic cleavage, as shown by the detection of benzamide in the experiment with compound 7a.
Three isomeric amidoethylated triphenylmethanes were found in run 2, all formed under abnormal cleavage of the aziridine ring. The main isomer was the ortho-substituted triphenylmethane 12a, an extraordinary result without precedence in the chemistry of both Tr^{\bullet} and Tr^{-}. The structure of product 12a was conclusively established by ${ }^{1} \mathrm{H}$ NMR spectroscopy and was supported by the detection of precursor 13a in run 4. Structure assignment for compounds 12 and para isomers 11 is primarily based on the chemical shifts for the benzylic proton $(\alpha-\mathrm{H})$ of the trityl moiety. For para-compound 11 a (and 11b-d) this is $\delta 5.54$ ($\delta 5.53-5.55$), in very good agreement with triphenylmethane ($\delta 5.54$), pointing to an identical propeller conformation. For ortho-compound 12a (and 12b-d), however, this chemical shift is $\delta 6.36$ ($\delta 6.30-6.37$), in accord with steeper conformations of the propeller blades caused by the voluminous ortho substituent. A similar downfield shift has been described by Kessler et al. ${ }^{9} \delta 6.01$ for tris(2,4,6-trimethylphenyl)methane and $\delta 6.52$ for tris(2,6dimethoxyphenyl)methane. The conformation of compound 12a induces also a downfield shift for the methyl signal: $\delta 1.59$ ($\delta 1.51-1.60$ for $12 \mathrm{~b}-\mathrm{d}$) as compared with $\delta 1.38$ for the para isomer 11a (δ 1.31-1.41 for 11b-d). Nuclear Overhauser enhancement (NOE) experiments clearly established for compound 12a (and analogously for compound 12b) the short distance between the two methyl groups (frequency irradiated) and the $x-\mathrm{H}$ as well as between the NCH_{2} group and (especially strong NOE) the one neighbouring aryl H at $\delta 7.42-7.51$. For compound 11c there was no NOE observed between the methyl group and the $x-H$ but instead a clear NOE between methyl (frequency irradiated) and the two neighbouring aryl H and the NCH_{2} group. Irradiation at the frequency of the $\alpha-\mathrm{H}$ provided also the expected NOE for both compounds 12a and 12b.

Run 3 needs no comment apart from the advanced conversion of methalylamide 7a into enamide 8a. The shortterm run 4 shows the opposite effect, i.e. no formation of enamide 8a at all. More important in this run, compound 12a was replaced by a corresponding yield of its precursor 13a as calculated from the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product mixture with the help of internal calibration. An attempt to
isolate compound 13a by chromatography was unsuccessful since conjugated triene 13a was rather unstable and could not be separated either from methallylamide 7 a or from its own unknown secondary products. The structure of compound 13a was primarily deduced from the absence of compound 12a in run 4 and the simultaneous appearance of five multiplets of equal intensity, one aliphatic at $\delta 3.05$ and four olefinic ones at $\delta 5.78-5.88,6.05-6.14,6.18-6.27$ and 6.42-6.50. These data coincide with the ${ }^{1} \mathrm{H}$ NMR data of the pivaloyl analogue 13b in run 10 and of the 4-phenylbenzoyl analogue 13 c in run 11.

One problem of this work is already visible. It may be analysed and solved before the other results are discussed. How could one understand how a radical 6 combines at the ortho position of Tr° but not, or practically not at all, at the more accessible para position? A statistical factor of 2 and a longer conjugation in the ortho-product are certainly insufficient to explain the strong ortho preference. Collisions of radical 6 with a para position of Tr must happen and, for steric reasons, this should be the predominating kind of collision. Since detachment of hydrogen is the main reaction of radical $\mathbf{6 a}$, there can be no doubt about the result of these collisions. It will be hydrogen transfer from one methyl of radical 6 to the para position of Tr°. Subsequent conversion of the generated unstable isomer into triphenylmethane is no problem. Base-catalysed migrations of a non-aromatic ring-hydrogen to the α position are known. ${ }^{10}$ It follows by analogy that 'ortho collisions' should also result in hydrogen transfer and not in combination of radicals. Two closely related mechanisms, able to solve the problem, are put up for discussion. The dimer 14 of Tr^{*} is an excellent candidate for an ortho substitution. Compound 14 does not allow 'para reactions' to occur and it offers an allylic system for ortho substitution. The equilibrium between Tr° and 14 lies strongly in favour of the dimer. ${ }^{11} \mathrm{An} S_{\mathrm{H}} 2^{\prime}$ substitution of the dimer 14 by radical 6 with Tr° as the leaving radical (Scheme 2) can easily explain the formation of the ortho products. This

16

Scheme 2

leads to a simple but consistent mechanistic picture when hydrogen transfer with the monomeric Tr^{*} and the radical displacement with the dimer 14 are complemented by abnormal nucleophilic ring opening of acylaziridine 4 by Tr^{-}, forming the central isomer 10. A very similar picture arises when $\mathbf{T r}^{-}$is the leaving group in an $S_{\mathrm{N}} 2^{\prime}$ reaction of compound 14 with carbanion 16. Since free dianon 16 would rapidly be protonated by THF and/or an excess of triphenylmethane, this $S_{\mathrm{N}} 2^{\prime}$ mechanism is possible only when the required species 16 arises and reacts in a solvent cage. The reaction partners of the first in-cage step would then be radical anion 6 and the radical anion of compound 14, providing by SET the species 16 and 14 for the second step. At least two reasonable paths to the radical anion of compound 14 are conceivable.

The important difference between the $\mathbf{T r}^{-} \mathrm{Li}^{+}$runs 2-4 and the $\mathbf{T r}^{-} \mathrm{Na}^{+}$runs $5-8$ with the same aziridine 4 a is the formation of more than a trace of the N-isobutylamide 9a with $\mathbf{T r}^{-} \mathrm{Na}^{+}$. This is most likely not caused by an influence
of the counter-ion. The applied technique for the generation of $\mathbf{T r}^{-} \mathrm{Na}^{+}$is coupled with the conversion of naphthalenide into dihydronaphthalenes. The latter are good hydrogen donors and should be able to convert radical 6 directly into the nonradical imidate 17a as shown in Scheme 3 for one isomer of

Scheme 3 Reagent: i, TrH or THF
dihydronaphthalene. Imidate anion 17a yields compound 9a when the reaction is quenched with acid. Comparison of run 5 with runs 6 and 7 shows again the slowness of the methallylamide-enamide isomerization. The unexpectedly low isomerization in run 8 is difficult to understand unless one considers that run 8 deviates from run 7 in two respects which may be interconnected: run 8 was started at a low temperature and the yields of products total 96%. So, one may tentatively assume that, owing to the high conversion, the remaining excess of Tr^{-}was insufficient to complete the slow isomerization. Summarizing all reactions of the aziridine $\mathbf{4 a}$ and including run 9 with the reaction of compound $\mathbf{4 b}$, the ratio of products (7,8 , 9) without an incorporated trityl group to the ortho products 12 and 13 is remarkably constant at 2.5-3.0.

The aziridine $\mathbf{4 b}$ is more difficult to reduce than compound $4 \mathbf{a}$, with a difference in potential of more than $0.5 \mathrm{~V}^{4}$ but the outcome of run 9 is quite comparable to that of respective runs with the aziridine $\mathbf{4 a}$. A short-term run should allow us to find the non-aromatized ortho product 13b, that by analogy with compound 13a in run 4, however, would be difficult to isolate in a pure state. It was hoped to overcome this difficulty by simple experimental modifications that might yield a stable derivative of compound 13b by addition of dichlorocarbene to a double bond during work-up. Dichlorocarbene is generated in this mixture when the reaction is not quenched with acid and when the hydrolysis of the reaction mixture is performed by shaking with chloroform (in place of dichloromethane) and water. However, only the dichlorocarbene adduct 22 of methallylamide 7 b was detected (in run 10) but no adduct of compound 13b, although the latter adduct may have been present among the unidentified products. Fortunately, careful chromatography provided a small fraction of compound 13b sufficiently pure for a clear identification. The yield of compound 13b in Table 1 was calculated from the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product mixture isolated directly from the chloroform layer, i.e. 7 days prior to chromatography. This calculation was based on the chromatographically isolated yield of the methallylamide 7b and on the integrals for amides $\mathbf{1 3 b}$ and $\mathbf{7 b}$ in the crude mixture. This yield of amide 13b represents (probably) a lower limit of ortho products since it is likely that already at this stage of the run a part of compound 13b had changed to other products.

The chemical shifts given in ref. 2 for compound 13b are now complemented by the data of the olefinic and aromatic protons: $\delta 5.78(1 \mathrm{H}, \mathrm{dd}, J 9.9,5.2 \mathrm{~Hz}, 4-\mathrm{H}), 6.04$ (overlapping with signals of an impurity; approximate analysis: $1 \mathrm{H}, \mathrm{dd}, J 9.3,6.2$ $\mathrm{Hz}, 2-\mathrm{H}), 6.16$ ($1 \mathrm{H}, \mathrm{dd}, J 9.5,5.3 \mathrm{~Hz}, 3-\mathrm{H}), 6.44$ ($1 \mathrm{H}, \mathrm{d}, J 9.9$ $\mathrm{Hz}, 5-\mathrm{H}$), $7.10-7.40$ (m, more than 10 ArH due to impurities). The olefinic signals may be compared with those of compound 13a given above. Coupling among the protons of the nonaromatic ring was confirmed by 2D homonuclear chemicalshift correlation spectroscopy (COSY). The quantity of additional minor signals pointed to several impurities. A mass spectrum of this chromatographic fraction, taken 10 days later

21

22
showed as highest-mass peak $m / z 415$ with an intensity higher than that of the peak at $m / z 399\left(\mathbf{M}^{+}\right.$for 13b). The intensities of these two peaks were 1.8% vs. 0.1% at $134{ }^{\circ} \mathrm{C}, 16 \%$ vs. 2.7% at $177^{\circ} \mathrm{C}$ and vs. 2.0% at $186^{\circ} \mathrm{C}$ relative to the base peak at m / z $57\left(\mathrm{Bu}^{t}\right)$. The peak at $m / z 415$ indicates the incorporation of one oxygen atom into compound 13b, compatible with structures 18 and 19. A new ${ }^{1} \mathrm{H}$ NMR spectrum of this fraction, initiated by the MS results, showed only some residual compound 13b besides unidentified products. The chromatographic fraction following that of compound 13b was a mixture whose ${ }^{1} \mathrm{H}$ NMR spectrum was difficult to analyse. Attempts to stimulate crystallization by digestion with methanol were partly successful. Some crystals of the hemiketal 20 of the supposed ketone 19 could be picked out manually. More hemiketal 20 was detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy in the mother liquor and in other fractions when they were treated with methanol.

An expected reaction of epoxide 18, if it is formed, would be an intramolecular ring opening by the amide group. The respective product 21 was indeed found in a fraction consisting mainly of methallylamide $\mathbf{7 b}$. The very late elution of this trityl-derived product is easily explained by the presence of the hydroxy group. In contrast, the hydroxy-bearing hemiketal 20 can only have been formed after elution of the ketone 19. The ${ }^{1} \mathrm{H}$ NMR evidence for structure 21 is very convincing. Only two olefinic protons are present ($\delta 5.45$ and 6.82). 1 H multiplets for $\mathrm{OCH}, \mathrm{NCH}$ and NCCH are observed with reasonable shifts. The diastereotopic character of the NCH_{2} group, found in compounds 13 b and 20 , is retained but the two doublets of doublets have changed to two doublets with geminal coupling. This indicates the absence of a proton at the nitrogen. Of course, no NH signal was found. So, we have good reasons to assume that one important first event in the spontaneous transformation of compound 13 b , and analogously of its analogues $13 \mathrm{a}, \mathrm{c}$ is the oxidation $13 \mathrm{~b} \longrightarrow 18$, possibly initiated by light. Intramolecular ring opening of the epoxide 18 yields compound 21 while, probably acid catalysed, isomerization of compound 18 forms the ketone 19 that is converted into the hemiketal 20 by treatment with methanol.

The aziridine $4 c$ should be reduced more easily than compound $4 \mathbf{4 a}$. From the difference in redox potential ${ }^{12}$ between acetophenone and 4-phenylacetophenone one would expect the potential of compound $\mathbf{4 c}$ to be less negative than that of compound 4 a by $\sim 0.3 \mathrm{~V}$. The easier formation of ketyl 5 has a remarkable influence as shown by run 11. The yields of ortho products in runs $1-10$ were $20-26 \%$ apart from the short-term run 10 . In these runs, the para-product 11 was found in traces only, or not at all, but in run 11 it is the second main product with a yield that is more than twice as high as that of the ortho-products $\mathbf{1 2 c}$ and 13 c . At the same time, it is the first run with more than a trace of isobutylamide 9 in a reaction with the lithium salt. This points to the influence of another mechanism. Tolbert ${ }^{13}$ presented evidence that a radical can react with Tr^{-}by addition to a para position and that the generated radical anion is able to propagate a chain reaction of
the $S_{\text {RN }} 1$ type by SET to an electrophile such as bromobenzene. The redox potential of compound $\mathbf{4 c}$ may be estimated to be close to that of bromobenzene. Thus, the para-product 11c is probably the result of an $S_{\text {RN }} l$ reaction as shown in Scheme 4.

Scheme 4
This chain reaction can only proceed at the expense of other reactions of radical 6. This is indeed borne out by run 11 , especially by the value of only 30% for hydrogen transfer that in runs $1-10$ amounted to $\sim 50-60 \%$ of product. The $S_{\mathrm{RN}} 1$ path does not generate any Tr^{*} that is the pre-requisite for hydrogen transfer. In a side-reaction, radical anion 23 may convert amidatoalkyl radical 6 into the carbanion 16 that is rapidly protonated (Scheme 2, bottom) in the reaction medium, thereby accounting for production of compound 9c. The mechanistic picture displayed above has to be complemented by reactions via radical 23. The radical anion 23 may arise also in reactions with the aziridines $\mathbf{4 a}, \mathbf{b}$ but SET to these compounds $\mathbf{4 a}, \mathrm{b}$ is obviously too slow for a chain reaction. When radical 6 or the radicals in Tolbert's work can add to Tr^{-}one may expect that radical Tr^{-}will also add to Tr^{-}, thereby forming the radical anion of dimer 14 that is required for the $S_{N} 2^{\prime}$ path to compound 12 .

The redox potential of acylaziridine $\mathbf{4 d}$ is 0.3 V less negative than that of $\mathbf{4 a} .{ }^{4}$ One would therefore expect a preference for para substitution with compound $4 \mathbf{d}$ similar to its analogue $\mathbf{4 c}$ in run 11 but perhaps less clear since the corresponding radical anion $6 d$ rapidly cyclizes ${ }^{14.15}$ to radical 25 , whose behaviour must differ from that of its precursor $\mathbf{6 d}$. Run 12 with acylaziridine $4 d$ shows the expected preference for para substitution (16% of 11 d vs. 3% of 12 d , no 13 d) as well as a great amount of intermediate cyclization of radical $\mathbf{6 d}$. Addition to a para position of Tr^{-}seems to be the only reaction of radical 25 , in analogy ${ }^{15}$ with the behaviour of the demethylated analogue of radical 25 . The pyrrolidinone 26 (diastereoisomers $\sim 1: 1$) was the main product in this run at the expense of products (7,8 and 9) without the incorporated trityl moiety. The ${ }^{1} \mathrm{H}$ NMR data of both diastereoisomers are nearly identical since the diastereoisomerism originates only from different para substituents (benzhydryl or hydrogen) of two otherwise indistinguishable phenyl groups in compound 26.

It is possible that at least a part of ketyl 5 d is generated by inner-sphere SET, by homolytic disintegration of a first formed Michael adduct, as has been reported ${ }^{15}$ for the reaction of Tr^{-} with the cinnamamide 30 . So, in run 13 the reaction was repeated but now the Tr^{-}that had not been converted within 30 min was destroyed. A solution of TrCl in THF was added dropwise until the red (colour of Tr^{-}) solution was discoloured. The mixture was then stirred for 8 days before work-up. The products of run 12 were found again, but a part of paracompound 11d was discovered as its α-hydroxy derivative 27 (see Scheme 5). The latter was obtained in mixture only and was identified by ${ }^{1} \mathrm{H}$ NMR data that nicely correspond to those of compound 11 d except for the absence of the $\alpha-\mathrm{H}$ singlet at δ 5.53. The position of compound 27 in the chromatographic sequence is compatible with a hydroxylated derivative of

Scheme 5
compound 11d. Formation of compound 27 is easily understood, when compound 11d, or rather its nitranion, exists as a carbanion in equilibrium with Tr^{-}. Addition of TrCl converted this carbanion into the respective radical that with oxygen finally yielded product 27 . The corresponding oxidation of Tr^{*} is known to form TrOH . Indeed, TrOH was also detected in this run. More importantly, direct evidence for a Michael addition as the first event in the reaction was found. The two products 28 and 29 clearly demonstrate that Michael addition plays a role in the reaction of Tr^{-}with acylaziridine $\mathbf{4 d}$. Aziridines 4 undergo abnormal hydrolytic ring opening during chromatography. The products may be called artifacts of compounds 4 , indicating that acylaziridines 4 have formed in a reaction or have survived a reaction. Then, at least compound 29 is an artifact of the generated acylaziridine 4 e , while compound 28 may either be an artifact of its hydrated derivative $\mathbf{4 e}$ or it may be formed directly from the anion 31 in a reaction described by Laurent and co-workers ${ }^{4}$ for an analogue of anion 31 in which Tr° is replaced by H .

The results of run 13 pose three questions. Why did a part of compound 31 survive 8 days while the demethylated analogue of compound 31 was completely converted ${ }^{15}$ within 4 days, mainly into SET products? The answer may be sought in the reversibility of the homolytic disintegration, since in run 13 the high concentration of Tr^{*}, generated by addition of TrCl , may counteract the homolysis $\mathbf{3 1} \longrightarrow \mathbf{5 d}$. Second, the yields of products in run 13 total only 43%. The last chromatographic fraction was a mixture of unidentified substances that probably contained an artifact of compound $\mathbf{4 d}$ formed by abnormal hydrolytic ring opening. ${ }^{1} \mathrm{H}$ NMR signals were found at expected positions. How can a part of the aziridine $\mathbf{4 d}$ survive until work-up when no aziridine $\mathbf{3 0}$ or an artifact of it had been found ${ }^{15}$ in two runs of Tr^{-}with compound $\mathbf{3 0}$?

Removal of the excess of Tr^{-}by TrCl liberates the aziridine 4d from anion 31 due to the reversibility of the Michael addition. The effect may be increased by a less favourable Michael equilibrium for compound $\mathbf{4 d}$ resulting from a flatter and more rapidly inverting nitrogen pyramid as compared with
the case for the cinnamamide 30. Strong Michael acceptors have a non-amidic carbonyl.

The third question: is there any direct indication for innersphere SET? Without an excess of Tr^{-}, i.e. when TrCl had been added, no outer-sphere SET is possible. Then, any ketyl 5d and radical $\mathbf{6 d}$ can arise from only adduct 31 , and radical $\mathbf{6 d}$ can react with only Tr^{*} or its dimer 14. The reaction of Tr^{-} with TrCl generates concentrations of species Tr° and 14 substantially higher than in run 12. The increase in yield of methallylamide 7 d from 6% to 14% thus clearly indicates innersphere SET for the generation of at least a part of compound 7d. At the same time, the drop in yield of ortho-product 12d from 3% to 0.2% practically excludes the $S_{\mathrm{H}} 2^{\prime}$ path (upper part of Scheme 2) to imidate anion 15 and thus to ortho compounds 13 and 12. The Tr^{-}in run 12 can generate the radical anion of compound 14 that is necessary for the $S_{\mathrm{N}} 2^{\prime}$ path (lower part of Scheme 2 and text) to give imidate anion 15. There seems to be nearly no SET possible from Tr^{-}to acylaziridine $\mathbf{4 d}$ in run 13 , i.e. nearly no Tr° will be generated. Rapid Michael addition decreases the concentrations of species $4 d$ and Tr^{-}. Only the fast $S_{\mathrm{RN}} 1$ chain reaction (Scheme 4 , bottom) is able to compete. para Substitution without intermediate cyclization in the shortterm run 13 (11d, 27, together 11%) reaches two-thirds the yields of run $12(16 \% 11 d)$ in accord with the rapidity of a chain reaction that can proceed only as long as sufficient Tr^{-} is available. No indication of a chain reaction had been observed in the reaction of Tr^{-}with the cinnamamide 30 due to a practically quantitative trapping of compound $\mathbf{3 0}$ by the Michael addition. ${ }^{15}$ This prevents any outer-sphere SET.

Experimental

Characterization of products was accomplished by ${ }^{1} \mathrm{H}$ NMR (Bruker W 250, AC 200 or AC 300 spectrometers, CDCl_{3} solution unless otherwise stated, multiplicity given, J-values in Hz), IR (Perkin-Elmer 283 spectrometer, KBr tablets unless otherwise stated) and mass spectroscopy (Varian MAT 311-A instrument). Light petroleum refers to the fraction with distillation range $50-70^{\circ} \mathrm{C}$. The concentration of BuLi (hexane solution) was determined by titration with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{sec}$-butyl alcohol, indicator o-phenanthroline (method recommended by the supplier of BuLi, Fluka, Switzerland).

All reactions were performed in dry, continuously stirred THF under dry nitrogen whose quality was secured with a THF solution of sodium naphthalenide.

The aziridines and some products are described in ref. 7: 7b,d; ref. 16: 1a-c, 7a,c and 9a,c; ref. 17: 3 and 8a; ref. 18: 1d and 9b; ref. 19: 9d (without spectral data).

Reactions of Table 1

For details see Table $1 . \mathrm{Li}^{+} \mathrm{Tr}^{-}$was generated by addition of BuLi to a frozen (liquid nitrogen) solution of triphenylmethane in THF ($50-100 \mathrm{~cm}^{3}$) and warming up to room temperature (ca. 1 h). $\mathrm{Na}^{+} \mathrm{Tr}^{-}$was generated by stirring of a solution of naphthalene and triphenylmethane in THF ($50-100 \mathrm{~cm}^{3}$) with sodium pieces for $20-24 \mathrm{~h}$. A solution of acylaziridine 4 in THF ($10-20 \mathrm{~cm}^{3}, 50 \mathrm{~cm}^{3}$ in run 4) was added dropwise within $2-5$ min, apart from run 10 in which the solution of compound $4 \mathbf{b}$ was rapidly injected by means of a syringe. The reactions were quenched with glacial acetic acid except for run 13. Evaporation yielded a residue, which was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CHCl}_{3}\right.$ in runs 10 and 13) and washed with water. The residue obtained by evaporation was subjected to column chromatography [silica gel (Merck), 0.063-0.2 mm, thickness \times length of column in cm and other details are given with each run].

Run 1. Chromatography $\left(3.5 \times 45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ provided triphenylmethane and compound $2(1.36 \mathrm{~g}, 58 \%)$, mp 204 $205^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 76.6 ; \mathrm{H}, 6.9$; N, 3.3. $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{~S}$ requires C, 76.7; H, 6.7; N, 3.0\%); $v_{\max } / \mathrm{cm}^{-1} 3255(\mathrm{NH}), 1310,1305,1155$ and $1133\left(\mathrm{all} \mathrm{SO}_{2}\right) ; \delta 0.93\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 2.40(\mathrm{~s}, \mathrm{Me}$ of Ts), $3.10(\mathrm{~s}$,
CH_{2}), $4.70(\mathrm{~s}, \mathrm{NH}), 7.07-7.53(\mathrm{~m}, 17 \mathrm{ArH})$ and $7.63(\mathrm{~m}, 2 o-\mathrm{H}$ of Ts)

Continued elution yielded compound 3 ($120 \mathrm{mg}, 11 \%$).
Run 2. Chromatography (3×15, light petroleum) removed the bulk of triphenylmethane. Ethyl acetate provided an eluate that deposited compound 12a (450 mg), mp 235-236 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 85.7 ; \mathrm{H}, 7.1 ; \mathrm{N}, 3.4 . \mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}$ requires C, 85.9; H, 7.0; N , 3.3%); $v_{\text {max }} / \mathrm{cm}^{-1} 3285(\mathrm{NH})$, 1639 (amide I) and 1540 (amide II); $\delta 1.59(\mathrm{~s}, 2 \mathrm{Me}), 3.83\left(\mathrm{~d}, J 6.2, \mathrm{NCH}_{2}\right), 5.26(\mathrm{t} \mathrm{br}, J 6, \mathrm{NH})$, $6.36(\mathrm{~s}, \alpha-\mathrm{H}), 7.01-7.09\left(\mathrm{~m}, 4 o-\mathrm{H}\right.$ of $\left.\mathrm{CPh}_{2}\right), 7.09-7.14(\mathrm{~m}, 1 o-\mathrm{H}$ of substituted Ph), 7.15-7.42 (m, 13 ArH) and 7.42-7.51 (m, 1 ArH next to the side-chain).

Evaporation of the mother liquor provided a residue, chromatography of which [$3.5 \times 50, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate ($100: 1$)] yielded triphenylmethane and mixture A (1.19 g). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate ($10: 1$) provided compound 7 a ($520 \mathrm{mg}, 30 \%$). Washing of mixture A with light petroleum left mixture $B(600 \mathrm{mg})$ undissolved. Evaporation of the washing solution yielded mixture C (590 mg). Mixture B consisted (${ }^{1} \mathrm{H}$ NMR) of compounds 12a (442 mg , total 892 mg , 21%), $8 \mathrm{a}(107 \mathrm{mg})$ and $11 \mathrm{a}(51 \mathrm{mg}, 1 \%) ; \delta 1.38(\mathrm{~s}, 2 \times \mathrm{Me}), 3.62$ (d, $J 6.1, \mathrm{NCH}_{2}$), $5.54(\mathrm{~s}, ~ x-\mathrm{H}), 5.80(\mathrm{~s}$ br, NH) and 7.01-7.85 (m, ArH of 11a, 12a and 8a).

Mixture C consisted (${ }^{1} \mathrm{H}$ NMR) of $\mathbf{8 a}$ (373 mg , total 480 mg , 27%) and 10 a ($217 \mathrm{mg}, 5 \%$). Compound 10a is characterized below.

Preparation of compound 8a by isomerization of compound 7a.-A solution of compound 7a $(0.59 \mathrm{mmol})$ in THF $\left(30 \mathrm{~cm}^{3}\right)$ was stirred for 4 days with NaH (excess) and a piece of sodium. The usual work-up provided a residue (95 mg) whose ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of substrate 7a but the presence of compound 8 a (main component) and of benzamide.

Run 3. Chromatography (3×15, light petroleum) removed the bulk of triphenylmethane (5.66 g). Ethyl acetate provided an eluate, chromatography of which [$3.5 \times 40, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate ($100: 1$)] yielded triphenylmethane (590 mg) and compound $10 \mathrm{a}\left(60 \mathrm{mg}\right.$), mp 208-210 ${ }^{\circ} \mathrm{C}$ (Found: C, 86.0; H, 7.1; $\mathrm{N}, 3.4 . \mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NO}$ requires $\mathrm{C}, 85.9 ; \mathrm{H}, 7.0 ; \mathrm{N}, 3.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3320(\mathrm{NH}), 1640$ (amide I) and 1554 (amide II); $\delta 1.44$ (s, 2 Me), 3.65 (d, $J 6.6, \mathrm{NCH}_{2}$), 5.86 (t br, $J 6.7, \mathrm{NH}$), $7.02-7.54$ (m, 18 $\mathrm{ArH})$ and $7.55-7.62(\mathrm{~m}, 2 o-\mathrm{H}$ of COPh$)$. Continued elution yielded mixture A (2.03 g). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate ($10: 1$) provided compound 7 a ($180 \mathrm{mg}, 10 \%$) containing (${ }^{1} \mathrm{H}$ NMR) a trace of compound 9a. Washing of mixture A with light petroleum ($2 \times 100 \mathrm{~cm}^{3}$) left mixture B (1.09 g) undissolved. Evaporation of the washing solution provided compound 8a ($940 \mathrm{mg}, 54 \%$). Mixture B consisted (${ }^{1} \mathrm{H}$ NMR) of compounds $12 \mathrm{a}(1.016 \mathrm{~g}, 24 \%$) and $10 \mathrm{a}(74 \mathrm{mg}$, total 134 mg , 3%).

Run 4. ${ }^{1} \mathrm{H}$ NMR analysis (internal standard) of the residue $(4.00 \mathrm{~g})$ prior to chromatography indicated the presence of compounds $4 \mathrm{a}(464 \mathrm{mg}, 31 \%$), $7 \mathrm{a}(658 \mathrm{mg}, 64 \%$), 10a (40 mg , 1%) and 13a ($557 \mathrm{mg}, 23 \%$; ${ }^{1} \mathrm{H}$ NMR data in the text). Chromatography [$3.5 \times 50, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate (25:1)] provided triphenylmethane, compound 10a (38 mg) and a mixture (670 mg) containing (${ }^{1} \mathrm{H}$ NMR) compounds 7a, 13a and unknown secondary products probably derived from triene 13a.

Run 5. Compound 12a (650 mg) was deposited from the organic layer. Evaporation of the mother liquor provided a residue, chromatography of which (3×15, light petroleum) removed the bulk of hydrocarbons. Ethyl acetate provided an eluate, chromatography of which ($3.5 \times 40, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded hydrocarbons, mixture A (445 mg) and mixture B (1.12 g). Washing of mixture A with light petroleum ($2 \times 100 \mathrm{~cm}^{3}$) left mixture C (340 mg) undissolved. Evaporation of the washing solution yielded compound $\mathbf{8 a}(105 \mathrm{mg})$. Identical treatment of mixture B provided compound 12a (80 mg undissolved) and mixture D (1.04 g). Mixture C consisted (${ }^{1} \mathrm{H}$ NMR) of compounds 12 a (170 mg , total $900 \mathrm{mg}, 21 \%$) and $\mathbf{1 0 a}(170 \mathrm{mg}$,

4\%). Mixture D consisted (${ }^{1} \mathrm{H}$ NMR) of compounds 7a (404 $\mathrm{mg}, 23 \%$), 9 a ($59 \mathrm{mg}, 3 \%$) and 8 a (578 mg , total $683 \mathrm{mg}, 39 \%$).
Run 6. Chromatography (3×15, light petroleum) removed the bulk of hydrocarbons. Ethyl acetate provided an eluate that deposited compound 12a (200 mg). Evaporation of the mother liquor gave a residue, chromatography of which [3.5×45, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate (100:1)] yielded hydrocarbons and mixture $\mathrm{A}(1.76 \mathrm{~g})$. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate ($10: 1$) provided compound $9 \mathrm{a}(230 \mathrm{mg}, 13 \%$). Washing of mixture A with light petroleum ($2 \times 100 \mathrm{~cm}^{3}$) left mixture B (940 mg) undissolved. Evaporation of the washing solution yielded compound 8a (820 mg). Mixture B consisted (${ }^{1} \mathrm{H}$ NMR) of compounds 8a (29 mg , total $849 \mathrm{mg}, 48 \%$), 10a ($256 \mathrm{mg}, 6 \%$) and 12a (655 mg , total $855 \mathrm{mg}, 20 \%$).

Run 7. Chromatography (3×15, light petroleum) removed the bulk of hydrocarbons. Elution with ethyl acetate provided a mixture (1.6 g), chromatography of which [$3 \times 40, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ethyl acetate (25:1)] yielded hydrocarbons, compound 10a (35 $\mathrm{mg}, 2 \%$) and mixture A (760 mg). Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate ($10: 1$) yielded compound $9 \mathrm{a}(130 \mathrm{mg}, 15 \%$). Washing of mixture A with light petroleum ($2 \times 100 \mathrm{~cm}^{3}$) left mixture B (460 mg) undissolved. Evaporation of the washing solution yielded compound $8 \mathbf{8 a}\left(302 \mathrm{mg}\right.$). Mixture B consisted (${ }^{1} \mathrm{H}$ NMR) of compounds 8a (35 mg , total $337 \mathrm{mg}, 38 \%$) and 12a ($\mathbf{4 2 5} \mathrm{mg}$, 20%).
Run 8. Chromatography (3×18, light petroleum) removed the bulk of hydrocarbons. Elution with ethyl acetate provided a mixture (2.1 g), chromatography of which [$3 \times 40, \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ ethyl acetate (25:1)] gave hydrocarbons, compound 10a (97 $\mathrm{mg}, 5 \%$), mixture A (577 mg) and then $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-ethyl acetate (5:1)] mixture B (540 mg). Mixture A consisted (${ }^{1} \mathrm{H}$ NMR) of compounds 8 a ($35 \mathrm{mg}, 4 \%$) and 12a ($544 \mathrm{mg}, 26 \%$). Mixture B consisted (${ }^{1} \mathrm{H}$ NMR) of compounds $7 \mathrm{a}(481 \mathrm{mg}, 55 \%$) and 9 a ($59 \mathrm{mg}, 6 \%$).

Run 9. Chromatography [$3.5 \times 50, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate (25:1)] removed triphenylmethane. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate ($10: 1$) provided mixture $\mathrm{A}(680 \mathrm{mg})$ and compound 12 b $\left(267 \mathrm{mg}\right.$), mp 207-209 ${ }^{\circ} \mathrm{C}$ (Found: C, 84.3; H, 8.6; N, 3.8. $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}$ requires C. $84.2 ; \mathrm{H}, 8.3 ; \mathrm{N}, 3.5 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3335$ (NH), 1646 (amide I) and 1550 (amide II); $\delta 0.87$ (s, Bu ${ }^{l}$), 1.51 (s, $2 \times \mathrm{Me}$), $3.60\left(\mathrm{~d}, J 6.0, \mathrm{NCH}_{2}\right), 4.76(\mathrm{t}$ br, $J 6, \mathrm{NH}), 6.30$ $(\mathrm{s}, x-\mathrm{H}), 6.98-7.08\left(\mathrm{~m}, 4 o-\mathrm{H}\right.$ of $\left.\mathrm{CPh}_{2}\right), 7.08-7.13(\mathrm{~m}, 1 o-\mathrm{H}$ of substituted Ph), $7.16-7.32(\mathrm{~m}, 8 \times \mathrm{ArH})$ and $7.38-7.45(\mathrm{~m}$, 1 ArH next to the side-chain).

Continued elution yielded mixture B (30 mg) and compound 7b ($850 \mathrm{mg}, 55 \%$). Mixture A consisted (${ }^{1} \mathrm{H}$ NMR) of compounds 8b ($69 \mathrm{mg}, 4 \%$) and $\mathbf{1 2 b}(611 \mathrm{mg}$). Mixture B consisted (${ }^{1} \mathrm{H}$ NMR) of compounds 12 b (20 mg , total 898 mg , 22%) and $11 \mathrm{~b}\left(10 \mathrm{mg}, 0.2 \%\right.$); $v_{\text {max }} / \mathrm{cm}^{-1} 3460(\mathrm{NH}), 1664$ (amide I) and 1528 (amide II); $\delta 1.05\left(\mathrm{~s}, \mathrm{Bu}^{\mathrm{t}}\right.$), $1.31(\mathrm{~s}, 2 \times \mathrm{Me}), 3.39(\mathrm{~d}$, $J 5.9, \mathrm{NCH}_{2}$), $5.24(\mathrm{~s}$ br, NH) and $5.54(\mathrm{~s}, \alpha-\mathrm{H})$; ArH signals hidden under signals of compound $\mathbf{1 2 b}$.

Preparation of compound $\mathbf{8 b}$ by isomerization of compound 7b.-A solution of triphenylmethane (5.7 mmol), BuLi (5 $\mathrm{mmol})$ and compound $7 \mathbf{b}(1.9 \mathrm{mmol})$ prepared and allowed to react for 9 days as described for reactions reported in Table 1. Chromatography $\left[3 \times 15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-ethyl acetate (25:1)] provided triphenylmethane and compound $\mathbf{8 b}(270 \mathrm{mg}, 93 \%)$, $\mathrm{mp} 64-65^{\circ} \mathrm{C}$ (Found: C, $69.7 ; \mathrm{H}, 10.9 ; \mathrm{N}, 8.9 . \mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}$ requires C, 69.6; H, 11.0; N, 9.0\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3365(\mathrm{NH}), 1690$ ($\mathrm{C}=\mathrm{C}$), 1645 (amide I) and 1512 (amide II); $\delta 1.24$ (s, Bu^{t}), 1.63 $(\mathrm{s}, 1 \times \mathrm{Me}), 1.71(\mathrm{~s}, 1 \times \mathrm{Me}), 6.53(\mathrm{~d}, J 10.1, \mathrm{NCH})$ and $6.97(\mathrm{~s}$ br, NH).

Run 10. The ${ }^{1} \mathrm{H}$ NMR spectrum of the crude mixture, recorded prior to chromatography, indicated the presence of compounds 7b and 13b in the molar ratio 19:6.9. Chromatography $[3 \times 30$, toluene-ethyl acetate, (9:1)] provided triphenylmethane and compound $\mathbf{1 0 b}(55 \mathrm{mg}, 3 \%), \mathrm{mp}$ 205-207 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 84.1 ; \mathrm{H}, 8.2 ; \mathrm{N}, 3.6 . \mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}$ requires C, 84.2; H, 8.3; N, 3.5\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3320$ (NH), 1635 (amide I)
and 1540 (amide II); $\delta 1.12$ (s, Bu^{t}), 1.32 ($\mathrm{s}, \mathrm{CMe}_{2}$), 3.41 (d, J 6.7, NCH_{2}), 5.44 (t br, $J 7, \mathrm{NH}$) and 7.12-7.38 (m, $15 \times \mathrm{ArH}$); $m / z\left(150{ }^{\circ} \mathrm{C}\right) 399\left(0.02 \%, \mathrm{M}^{+}\right), 243(100, \mathrm{Tr}), 165$ (29, fluorenyl), $156(60, \mathrm{M}-\mathrm{Tr})$ and $57\left(63, \mathrm{Bu}^{t}\right)$.

Continued elution provided impure compound 13b (46 mg) as an oil; ${ }^{1} \mathrm{H}$ NMR data are given in the text and in ref. 2; while being crystallized compound 13b underwent chemical transformation (see text).

Further elution yielded a mixture (387 mg) containing compound 13b and products derived from it as indicated by a relatively strong doublet at $\delta 6.46, J 10.1$. Scratching of this mixture under methanol generated hemiketal $20(28 \mathrm{mg})$, mp $97-98{ }^{\circ} \mathrm{C}$ (Found: M^{+}, 447.2775. $\mathrm{C}_{29} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires M , 447.2773); $v_{\max } / \mathrm{cm}^{-1} 3340(\mathrm{NH}$ or OH$), 3295(\mathrm{NH}$ or OH$), 1660$ (amide I) and 1540 (amide II); $\delta 0.84$ (s, $1 \times \mathrm{Me}^{(\mathrm{CMe}} \mathrm{CM}_{2}$), 0.85 (s, $1 \times \mathrm{Me}$ of CMe_{2}), $1.07\left(\mathrm{~s}, \mathrm{Bu}^{t}\right), 2.32\left(\mathrm{~m}, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}\right), 2.91$ (dd, J 14.0 and 5.1, NCHH), 3.44 (dd, J14.0 and 7.7, NCHH), 3.48 (s, NCCCH), 3.49 (s, OMe), 5.22 (m, NH), 5.80 (ddd, J $10.1,5.1$ and $1.2, \mathrm{C}=\mathrm{CC}=\mathrm{CH}), 6.46(\mathrm{~d}, \mathrm{~J} 10.2, \mathrm{C}=\mathrm{CCH}=\mathrm{C}), 7.10$ $(\mathrm{m}, 2 \mathrm{o}-\mathrm{H})$ and 7.17-7.42 (m, $8 \times \mathrm{ArH}$); assignment of $\mathrm{C}=\mathrm{CHCH}_{2}$ signals was confirmed by decoupling; $m / z\left(197^{\circ} \mathrm{C}\right)$ $447\left(2 \%, \mathrm{M}^{+}\right), 290$ ($11, \mathrm{M}-\mathrm{H}$ - side-chain), 156 (59 , sidechain) and 57 ($100, \mathrm{Bu}^{1}$).

Continued elution provided mixture A (54 mg), mixture B $(42 \mathrm{mg})$ and dichloride $22(78 \mathrm{mg}, 7 \%), \mathrm{mp} 106-108^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 237.0684 . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{M}, 237.0687$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3375(\mathrm{NH}), 1638$ (amide I) and 1530 (amide II); $\delta 1.24\left(\mathrm{~s}, \mathrm{Bu}^{t}\right)$, $1.31\left(\mathrm{~d}, J 7.4, \mathrm{CCl}_{2} \mathrm{CHH}\right), 1.36(\mathrm{~s}, 1 \times \mathrm{Me}), 1.45(\mathrm{~d}, J 7.4$, $\left.\mathrm{CCl}_{2} \mathrm{CH} H\right), 3.02(\mathrm{dd}, J 14.2$ and $4.2, \mathrm{NCHH})$ and $4.05(\mathrm{dd}, J$ 14.2 and $8.3, \mathrm{NCH} H) ; m / z\left(44^{\circ} \mathrm{C}\right) 239(0.3 \%, \mathrm{M}+2), 237(0.7$, M^{+}), $204(3,239-\mathrm{Cl}), 202(10, \mathrm{M}-\mathrm{Cl}), 154(5, \mathrm{M}-$ $\mathrm{CCl}_{2}-\mathrm{H}$), $141\left(25, \mathrm{M}-\mathrm{CH}_{2}=\mathrm{CCl}_{2}\right), 140\left(25, \mathrm{M}-\mathrm{CCl}_{2}-\right.$ $\mathrm{Me}), 85\left(12,141-\mathrm{CH}_{2}=\mathrm{CMe}_{2}\right.$), $84\left(18,140-\mathrm{CH}_{2}=\mathrm{CMe}_{2}\right)$ and 57 ($100, \mathrm{Bu}^{t}$).

Continued elution yielded compound 7 b (168 mg) and a mixture consisting (${ }^{1} \mathrm{H}$ NMR) of compounds 7 bb (123 mg , total $291 \mathrm{mg}, 38 \%$) and $21(56 \mathrm{mg}, 3 \%) ; \delta 0.79(\mathrm{~s}, 1 \times \mathrm{Me}), 0.92(\mathrm{~s}$, $1 \times \mathrm{Me}), 1.30\left(\mathrm{~s}, \mathrm{Bu}^{t}\right), 2.86(\mathrm{~d}, J 13.9, \mathrm{NCHH}), 3.14(\mathrm{~d}, J 3.0$, $\mathrm{NCCH}), 3.69$ (d, J13.9, CHH), 4.15 (m, NCH), 5.01 (m, CHO), 5.45 (dd, $J 9.8$ and $6.0, \mathrm{C}=\mathrm{CHC}-\mathrm{O}$), 6.82 (d, $J 9.9, \mathrm{CH}=\mathrm{CC}-\mathrm{O}$), $7.17(\mathrm{~d}, J 7.8,4 o-\mathrm{H}$ of $2 \times \mathrm{Ph})$ and $7.20-7.39(\mathrm{~m}, 6 \times \mathrm{ArH})$; decoupling, irradiated/changed: 4.15/3.14 and 5.01, 5.01/3.14 and 4.15 and $5.45,5.45 / 5.01$ and 6.82 .

Treatment of mixture A with methanol provided a few crystals (5 mg) and a mother liquor, evaporation of which yielded a mixture (49 mg) containing (${ }^{1} \mathrm{H}$ NMR, internal standard) compounds $\mathbf{1 2 b}(10 \mathrm{mg}), 20(21 \mathrm{mg}$, total 49 mg , 2%) and a product assumed to be an isomer of epoxide 18. The crystals consisted (${ }^{1} \mathrm{H}$ NMR) of compounds $\mathbf{1 2 b}$ (2 mg) and $20(3 \mathrm{mg}$, total $31 \mathrm{mg}, 1 \%)$. Mixture B contained (${ }^{1} \mathrm{H}$ NMR, internal standard) compound $\mathbf{1 2 b}$ (9 mg , total 21 mg , 0.1%).

Run 11. Chromatography [$3.5 \times 45, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate (25:1)] provided triphenylmethane and compound $10 \mathrm{c}(82 \mathrm{mg}$) $\mathrm{mp} 188-190{ }^{\circ} \mathrm{C}$ (Found: C, 86.8; H, 6.9; N, 2.7. $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{NO}$ requires $\mathrm{C}, 87.2 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3440(\mathrm{NH}), 1634$ (amide I) and 1549 (amide II); $\delta 1.46$ (s, Bu^{1}), 3.68 (d, J 6.6, $\left.\mathrm{NCH}_{2}\right), 5.90(\mathrm{t} \mathrm{br}, J 6.6, \mathrm{NH}), 7.15-7.53(\mathrm{~m}, 18 \times \mathrm{ArH})$ and $7.57-7.70(\mathrm{~m}, 6 \times \mathrm{ArH})$.

Continued elution yielded mixture $\mathrm{A}(160 \mathrm{mg})$, mixture B $(501 \mathrm{mg})$ and mixture $\mathrm{C}(175 \mathrm{mg})$. Elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate ($10: 1$) provided mixture D (294 mg). Elution with ethyl acetate yielded unknown products (619 mg). The composition (${ }^{1} \mathrm{H}$ NMR) of the mixtures was as follows. Mixture A: compounds 8c (12 mg), 10 c (15 mg , total $97 \mathrm{mg}, 4 \%$), 12c (66 $\mathrm{mg})$ and $13 \mathrm{c}(67 \mathrm{mg}) ; \delta 0.92(\mathrm{~s}, 1 \times \mathrm{Me}), 0.94(\mathrm{~s}, 1 \times \mathrm{Me}), 3.06$ (dd, $J 14.3$ and $4.9, \mathrm{NCHH}$), 3.63 (dd, $J 14.3$ and $8.3, \mathrm{NCH} H$), 5.55 (m, NH), 5.79-5.88 (m, 4-H), 6.04-6.14 (m, 2-H), 6.18-6.27 (m, 3-H), 6.48 (d, J9, 4, 5-H), 7.03-7.92 (m, ArH for 8c, 10c, 12c and 13c). Mixture B: compounds 8 c (53 mg , total $65 \mathrm{mg}, 5 \%$),

11c (337 mg), 12c (94 mg , total $160 \mathrm{mg}, 6 \%$) and $13 \mathrm{c}(17 \mathrm{mg}$, total $84 \mathrm{mg}, 3 \%$); mixture C: compounds 7 c (42 mg) and 11c (133 mg , total $470 \mathrm{mg}, 19 \%$); mixture D: compounds 7c (266 mg , total $308 \mathrm{mg}, 25 \%$) and $9 \mathrm{c}(28 \mathrm{mg}, 2 \%$).

Washing of mixture C with light petroleum- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ left pure compound 11 c undissolved, $\mathrm{mp} 128-129^{\circ} \mathrm{C}$ (Found: C , 87.5; $\mathrm{H}, 6.7 ; \mathrm{N}, 2.6 . \mathrm{C}_{36} \mathrm{H}_{33} \mathrm{NO}$ requires $\mathrm{C}, 87.2 ; \mathrm{H}, 6.7 ; \mathrm{N}$, 2.8%); $v_{\max } / \mathrm{cm}^{-1} 3460(\mathrm{NH}$), 1664 (amide I) and 1528 (amide II); $\delta 1.41(\mathrm{~s}, 2 \times \mathrm{Me}), 3.65\left(\mathrm{~d}, J 6.0, \mathrm{NCH}_{2}\right), 5.55(\mathrm{~s}, \alpha-\mathrm{H}), 5.79$ ($\mathrm{br}, J 6.0, \mathrm{NH}$), 7.09-7.18 ($\mathrm{m}, 6 \mathrm{o}-\mathrm{H}$ of trityl moiety, identified by NOE from $\alpha-\mathrm{H})$, $7.20-7.50(\mathrm{~m}, 11 \times \mathrm{ArH}, 2 \times \mathrm{ArH}$ of which are shown by NOE from methyl to be neighbours of the side-chain: d at $7.30, J 8.8$) and $7.53-7.70(\mathrm{~m}, 4 \mathrm{o}-\mathrm{H}$ and $2 \mathrm{~m}-\mathrm{H}$ of p-phenylbenzoyl).

Mixture A was extracted several times with hot light petroleum. Evaporation of the extract provided a residue, washing of which with hot ethanol left a trace of pure compound 12c undissolved, mp 155-157 ${ }^{\circ} \mathrm{C}$ (Found: C, 87.1; $\mathrm{H}, 6.8 \% ; \mathrm{M}^{+}, 495.2564 . \mathrm{C}_{36} \mathrm{H}_{33} \mathrm{NO}$ requires C, $87.2 ; \mathrm{H}, 6.7 \%$; $\mathrm{M}, 495.2563$); $v_{\text {max }} / \mathrm{cm}^{-1} 3420(\mathrm{NH}), 1654$ (amide I) and 1541 (amide II); $\delta 1.60(\mathrm{~s}, 2 \times \mathrm{Me}), 3.85\left(\mathrm{~d}, J 6.1, \mathrm{NCH}_{2}\right), 5.38(\mathrm{t} \mathrm{br}, J$ 6, NH), 6.37 (s, $\alpha-\mathrm{H}), 7.03-7.10\left(\mathrm{~m}, 4 o-\mathrm{H}\right.$ of CPh_{2}), 7.10-7.16 ($\mathrm{m}, 10-\mathrm{H}$ of substituted Ph in trityl moiety), 7.16-7.31 (m, $7 \times \mathrm{ArH}), 7.35-7.43(\mathrm{~m}, 4 \times \mathrm{ArH}), 7.43-7.50(\mathrm{~m}, 3 \times \mathrm{ArH})$ and $7.50-7.60(\mathrm{~m}, 4 \times \mathrm{ArH})$.
Recrystallization of mixture D from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum provided pure compound $7 \mathrm{c}, \mathrm{mp} 141-143^{\circ} \mathrm{C}$ (lit.,,$^{16} 141^{\circ} \mathrm{C}$).

Preparation of compound 8 c by isomerization of compound 7c.-A solution of triphenylmethane (6.5 mmol), BuLi (5 mmol) and compound 7 c (1.35 mmol) in THF ($20 \mathrm{~cm}^{-1}$) was prepared and allowed to react for 13 days as described for reactions reported in Table 1. Chromatography [3.5 $\times 15$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate (25:1)] provided triphenylmethane and compound 8 c (183 mg), $\mathrm{mp} 149-150^{\circ} \mathrm{C}$ (Found: C, 81.5 ; H, 6.9; $\mathrm{N}, 5.7 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}$ requires $\left.\mathrm{C}, 81.2 ; \mathrm{H}, 6.8 ; \mathrm{N}, 5.6 \%\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ $3320(\mathrm{NH}), 1695(\mathrm{C}=\mathrm{C}), 1641$ (amide I) and 1530 (amide II); δ $1.74(\mathrm{~s}, 1 \times \mathrm{Me}), 1.80(\mathrm{~s}, 1 \times \mathrm{Me}), 6.78(\mathrm{~d}, J 10.3, \mathrm{NCH}), 7.34$ 7.58 (m, NH, $2 m$-H and $1 p-\mathrm{H}$ of Ph), $7.58-7.72(\mathrm{~m}, 4 \times \mathrm{ArH})$ and 7.83-7.92 (m, $2 \mathrm{o}-\mathrm{H}$ of COAr).

Continued elution provided a mixture (60 mg) consisting (${ }^{1} \mathrm{H}$ NMR) of compound 8 c (52 mg , total $235 \mathrm{mg}, 69 \%$) and $7 \mathrm{c}(8 \mathrm{mg})$. Further elution yielded more compound $7 \mathrm{c}(94 \mathrm{mg}$, total $102 \mathrm{mg}, 30 \%$).

Run 12. Chromatography [$3 \times 45, \mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate (2:1)] provided mixture A (2.206 g) and mixture B (431 mg). Elution with ethyl acetate yielded mixture C (912 mg). The mixtures were composed (${ }^{1} \mathrm{H}$ NMR) as follows. Mixture A: triphenylmethane ($2.169 \mathrm{~g}, 8.9 \mathrm{mmol}$) and compound 14 (37 $\mathrm{mg}, 0.15 \mathrm{mmol}, 3 \%$); mixture B (Found: C, 85.8; H, 7.1; N, 3.2. Calc. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}: \mathrm{C}, 86.3 ; \mathrm{H}, 7.0 ; \mathrm{H}, 3.1 \%$): compounds 10 d (trace), 11d ($362 \mathrm{mg}, 16 \%$) and $12 \mathrm{~d}(69 \mathrm{mg}, 3 \%$); mixture C: compounds 26 ($1: 1 \alpha-26$ and $\beta-26,851 \mathrm{mg}, 38 \%$) and $7 \mathrm{~d}(61 \mathrm{mg}$, 6%). Characterization of products $10 \mathrm{~d}, 11 \mathrm{~d}$ and 12 d is presented in run 13.

Run 13. Chromatography [40×4, toluene-ethyl acetate ($1: 1$)] provided hydrocarbons, $\mathrm{TrOH}(744 \mathrm{mg}, 2.9 \mathrm{mmol})$ and compound $10 \mathrm{~d}(10 \mathrm{mg}), \mathrm{mp} 209^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3310(\mathrm{NH}), 1652$ (amide I) and 1538 (amide II); $\delta 1.38(\mathrm{~s}, 2 \times \mathrm{Me}$), 3.54 (d, J6.6, NCH_{2}), 5.24 ($\mathrm{t} \mathrm{br}, J 7, \mathrm{NH}$), 6.14 (d, $\left.J 15.6, \mathrm{C}=\mathrm{CHCO}\right), 6.98-$ $7.50(\mathrm{~m}, 20 \times \mathrm{ArH})$ and $7.58(\mathrm{~d}, J 15.6, \mathrm{CH}=\mathrm{CCO})$.

Further elution yielded a mixture (24 mg) consisting (${ }^{1} \mathrm{H}$ NMR) of compounds 10 d (18 mg , total $28 \mathrm{mg}, 1 \%$) and 28 (6 mg). Continued elution provided more compound 28 (41 mg), $\mathrm{mp} 209-210^{\circ} \mathrm{C}$ (Found: C, 86.1; H, 6.9; N, 3.0. $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}$ requires C, 86.3; H, 7.0; H, 3.1\%); $v_{\text {max }} / \mathrm{cm}^{-1} 3290(\mathrm{NH}), 1650$ (amide I) and 1545 (amide II); $\delta 2.07$ (dd, $J 14.6$ and 10.0, $\mathrm{C} H \mathrm{HCO}$), 3.10 (dd, $J 14.6$ and 1.9, CHHCO), 3.38 (dd, $J 15.8$ and 4.9, NCHH), 3.69 (dd, $J 15.8$ and 6.2, NCHH), 4.20 (s br, $=\mathrm{CHH}), 4.52(\mathrm{~s} \mathrm{br},=\mathrm{CHH}), 5.00(\mathrm{~s} \mathrm{br}, \mathrm{NH}), 5.27(\mathrm{dd}, J 9.8$ and 1.7, CHCCO), 6.69 (dd, J 8.0 and $1.9,2 o-\mathrm{H}$ of a Ph) and
6.99-7.60 (m, $18 \times \mathrm{ArH}) ; m / z\left(169^{\circ} \mathrm{C}\right) 244\left(21 \%, \mathrm{CPh}_{3}+1\right)$, 243 (100, CPh_{3}), 165 (28, fluorenyl) and 55 (8, methallyl).

The next chromatographic fraction (17 mg) consisted (${ }^{1} \mathrm{H}$ NMR) of compound 28 (7 mg , total $54 \mathrm{mg}, 2 \%$), 11d (5 mg) and 12d ($5 \mathrm{mg}, 0.2 \%$); $1.54\left(\mathrm{~s}, 2 \times \mathrm{Me}\right.$), $3.77\left(\mathrm{~d}, J 6.2, \mathrm{NCH}_{2}\right), 4.79(\mathrm{t}$ br, $J 6.4, \mathrm{NH}$), 5.93 (d, $J 15.7, \mathrm{C}=\mathrm{CHCO}$); other signals (m at $\delta 7.0-7.9, \mathrm{CH}=\mathrm{CCO}, \mathrm{ArH}$) overlap with those of compounds 11d and 28. Further elution yielded compound 11d (175 mg , total $180 \mathrm{mg}, 8 \%$), mp $95^{\circ} \mathrm{C}$ (Found: C, 86.7; H, 7.0; N, 3.2. $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}$ requires C, 86.3; $\mathrm{H}, 7.0 ; \mathrm{H}, 3.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3300$ (NH), 1657 (amide I) and 1542 (amide II); $\delta 1.35(\mathrm{~s}, 2 \times \mathrm{Me}$), 3.59 (d, $J 6.1, \mathrm{NCH}_{2}$), 5.32 (t br, $J 6.4, \mathrm{NH}$), 5.53 ($\mathrm{s}, \alpha-\mathrm{H}$), 6.25 (d, $J 15.6, \mathrm{C}=\mathrm{CHCO}$), $7.09-7.15(\mathrm{~m}, 6 \mathrm{o}-\mathrm{H}$ of trityl moiety), $7.18-7.35(\mathrm{~m}, 12 \times \mathrm{ArH}), 7.42-7.48(\mathrm{~m}, 2 o-\mathrm{H}$ of $\mathrm{C}=\mathrm{CPh})$ and 7.57 (d, $J 15.6, \mathrm{CH}=\mathrm{CCO}) ; m / z\left(185^{\circ} \mathrm{C}\right) 446(7 \%, \mathrm{M}+1), 445$ ($18, \mathrm{M}^{+}$), 286 (24), $285\left(100, \mathrm{Ph}_{2} \mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{CMe}_{2}\right.$), 167 (20, CHPh_{2}), 161 (26, $\mathrm{PhCH}=\mathrm{CHCONHCH}_{2}+\mathrm{H}$), 131 (44, $\mathrm{PhCH}=\mathrm{CHCO}$) and 103 (14, styryl).

Continued elution yielded a mixture (38 mg) of unknown products: then elution with (toluene-ethyl acetate-methanol ($9: 1: 1$) gave compound $7 \mathrm{~d}(101 \mathrm{mg}$) and a mixture (120 mg) consisting (${ }^{1} \mathrm{H}$ NMR) of compounds 7 d (45 mg , total 146 mg , 14%), $9 \mathrm{~d}(15 \mathrm{mg}, 1 \%)$ and $27(60 \mathrm{mg}, 3 \%) ; \delta 1.32(\mathrm{~s}, 2 \times \mathrm{Me})$, 3.56 (d, J 6.1, NCH_{2}), 5.45 (s br, NH), 6.27 (d, J 15.6, $\mathrm{C}=\mathrm{CHCO}), 6.96-7.45(\mathrm{~m}, \mathrm{ArH}$ of $27,7 \mathrm{~d}$ and 9 d$)$ and $7.56(\mathrm{~d}, J$ 15.7, $\mathrm{CH}=\mathrm{CCO}$). Spectral data (not given in ref. 19) of compounds 9d (prepared as described in ref. 18): $v_{\text {max }} / \mathrm{cm}^{-1} 3280$ (NH), 1659 (amide I), 1620 (C=C) and 1559 (amide II); $\delta 0.96$ (d, $J 6.6,2 \times \mathrm{Me}$), $1.85(\mathrm{~m}, \mathrm{NCCH}), 3.23$ (dd, J 6.7 and 6.3 , NCH_{2}), 5.87 (s br, NH), 6.44 (d, $J 15.6, \mathrm{C}=\mathrm{CHCO}$), $7.31-7.42$ $(\mathrm{m}, 3 \times \mathrm{ArH}), 7.43-7.53(\mathrm{~m}, 2 o-\mathrm{H}$ of Ph$)$ and $7.63(\mathrm{~d}, J 15.6$, $\mathrm{CH}=\mathrm{CCO}$).

The next fraction was impure pyrrolidinone $\alpha-26$ (142 mg , 6%), mp $216-218^{\circ} \mathrm{C}$ (Found: C, 86.2; H, 6.9; N, 3.3. $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}$ requires C, 86.3; $\mathrm{H}, 7.0 ; \mathrm{H}, 3.1 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3210$ (NH) and $1700(\mathrm{C}=\mathrm{O}) ; \delta 0.82(\mathrm{~s}, 1 \times \mathrm{Me}), 1.05(\mathrm{~s}, 1 \times \mathrm{Me})$, 2.85 (d, $J 9.4, \mathrm{NCHH}), 2.97$ (d, $J 9.4, \mathrm{NCH} H), 3.07$ (d, $J 9.9$, CHCO), 4.10 (d, $J 9.9, \mathrm{CHCCO}$), 5.46 ($\mathrm{s}, \alpha-\mathrm{H}$ of trityl moiety), $5.50(\mathrm{~s} \mathrm{br}, \mathrm{NH}), 6.97(\mathrm{~d}, J 8.2,2 o-\mathrm{H}$ of $\mathrm{O}=\mathrm{CCCPh}), 7.09$ $(\mathrm{m}, 4 \mathrm{o}-\mathrm{H}$ of $2 \times \mathrm{Ph}), 7.13-7.28(\mathrm{~m}, 11 \times \mathrm{ArH})$ and $7.35-7.40$ (m, $2 \times \mathrm{ArH}$).

Further elution yielded impure compound $29(78 \mathrm{mg}, 3 \%)$ as an oil (Found: M^{+}, 463.2513. $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{2}$ requires M , 463.2511); $v_{\text {max }} / \mathrm{cm}^{-1} 3300(\mathrm{NH}, \mathrm{OH}), 1651$ (amide I) and 1542 (amide II); $\delta 0.72(\mathrm{~s}, 1 \times \mathrm{Me}), 0.86(\mathrm{~s}, 1 \times \mathrm{Me}), 2.08(\mathrm{dd}, J 14.0$ and $11.8, \mathrm{CHHCO}$), 2.73 (dd, $J 13.8$ and $5.0, \mathrm{NCHH}$), 3.09 (dd, $J 14.0$ and $1.7, \mathrm{CH} H \mathrm{CO}$), 3.16 (dd, $J 13.8$ and 7.2, NCHH), 5.25 (dd, $J 11.5$ and $1.6, \mathrm{NCCCH}$), $5.46(\mathrm{t} \mathrm{br}, J 6, \mathrm{NH}), 6.70(\mathrm{~m}, 2 o-$ H of NCCCPh $)$, 6.91-7.05 (m, $m-\mathrm{H}$ and $p-\mathrm{H}$ of NCCCPh), $7.05-7.40(\mathrm{~m}, 9 \times \mathrm{ArH})$ and $7.42(\mathrm{~m}, 6 o-\mathrm{H}$ of trityl moiety); $m / z\left(199{ }^{\circ} \mathrm{C}\right) 463\left(0.1 \%, \mathrm{M}^{+}\right), 448(0.4, \mathrm{M}-\mathrm{Me}), 445(0.3$, M $-\mathrm{H}_{2} \mathrm{O}$), 405 ($0.5, \mathrm{M}$ - acetone), 333 ($1, \mathrm{PhCHCPh}_{3}$), 243 ($100, \mathrm{CPh}_{3}$) and 165 (24, fluorenyl).

Continued elution provided pyrrolidinone β - 26 ($107 \mathrm{mg}, 5 \%$), $\mathrm{mp} 210-211^{\circ} \mathrm{C}$ (Found: C, $86.2 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$
$3215(\mathrm{NH})$ and $1700(\mathrm{C}=\mathrm{O}) ; \delta 0.82(\mathrm{~s}, 1 \times \mathrm{Me}), 1.04(\mathrm{~s}$, $1 \times \mathrm{Me}), 2.79(\mathrm{~d}, J 9.4, \mathrm{NCHH}), 2.91(\mathrm{~d}, J 9.4, \mathrm{NCH} H), 3.07$ (d, J9.6, CHCO), 4.08 (d, $J 9.6$, CHCCO), 5.32 ($\mathrm{s} \mathrm{br}, \mathrm{NH}$), 5.47 (s, x-H of trityl moiety), 6.99 (d, J8.1, $2 o-\mathrm{H}$ of O=CCCPh), 7.09 $(\mathrm{m}, 4 \mathrm{o}-\mathrm{H}$ of $2 \times \mathrm{Ph}), 7.13-7.28(\mathrm{~m}, 11 \times \mathrm{ArH})$ and $7.35-7.40$ (m, $2 \times \mathrm{ArH}$).

Elution with ethyl acetate provided a mixture (432 mg) of unknown products containing (${ }^{1} \mathrm{H}$ NMR) as major component probably N-(2-hydroxy-2-methylpropyl)cinnamamide as indicated by the following ${ }^{1} \mathrm{H}$ NMR signals: $\delta 1.21\left(\mathrm{~s}, \mathrm{CMe}_{2}\right), 3.37$ (d, $\left.J 6.1, \mathrm{NCH}_{2}\right), 6.48(\mathrm{~d}, J 15.6, \mathrm{C}=\mathrm{CHCO}), 6.65(\mathrm{t} \mathrm{br}, J 7, \mathrm{NH})$ and 7.61 (d, $J 15.6, \mathrm{CH}=\mathrm{CCO})$.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support of this work.

References

1 'Aziridines. Part 68'; Part 67, K. Bellos and H. Stamm, J. Org. Chem., 1995, 60, 5661; Part 66, K. Bellos and H. Stamm, J. Prakt. Chem., 1995, 337, 269.
2 J. Werry, P.-Y. Lin, K. Bellos, P. Assithianakis and H. Stamm, J. Chem. Soc., Chem. Commun., 1990, 1389.

3 L. Ebertson, Electron Transfer Reactions in Organic Chemistry, Springer, Berlin and Heidelberg, 1987, pp. 39-45.
4 D. Archier-Jay, N. Besbes, A. Laurent, E. Laurent, S. Lesniak and R. Tardivel, Bull. Soc. Chim. Fr., 1989, 537.

5 H. Stamm and W. Wiesert, Chem. Ber., 1978, 111, 502.
6 P.-Y. Lin, G. Bentz and H. Stamm, J. Prakt. Chem., 1993, 335, 23.
7 P.-Y. Lin, K. Bellos, H. Stamm and A. Onistschenko, Tetrahedron, 1992, 48, 2359.
8 K. Bellos, H. Stamm and D. Speth, J. Org. Chem., 1991, 56, 6846.
9 H. Keßler, A. Moosmayer and H. Rieker, Tetrahedon, 1969, 25, 287.

10 P. Huszty, K. Lempert, G. Simig, J. Tamas, J. Hegedüs and G. Toth, J. Chem. Soc., Perkin Trans. 1, 1985, 491.

11 K. S. Colle, P. S. Glaspie and E. S. Lewis, J. Chem. Soc., Chem. Commun., 1975, 266.
12 L. Meites and P. Zuman, CRC Handbook Series in Organic Electrochemistry, CRC Press, Cleveland, 1976, vol. 1.
13 L. M. Tolbert and D. Martone, J. Org. Chem., 1983, 38, 1185; L. M. Tolbert, J. Am. Chem. Soc., 1980, 102, 6808.

14 G. Bentz, N. Besbes, A. Laurent and H. Stamm, Tetrahedron Lett., 1987, 28, 2511.
15 G. Bentz, J. Werry and H. Stamm, J. Chem. Soc., Perkin Trans. I, 1993, 2793.
16 H. Stamm, A. Sommer, A. Woderer, W. Wiesert, T. Mall and P. Assithianakis, J. Org. Chem., 1985, 50, 4946.

17 A. Onistschenko, B. Buchholz and H. Stamm, Tetrahedron, 1987, 43, 565.
18 J. Werry, H. Stamm, P.-Y. Lin, R. Falkenstein, S. Gries and H. Irngartinger, Tetrahedron, 1989, 45, 5015.

19 C. R. Hauser, R. S. Yost and B. I. Ringler, J. Org. Chem., 1949, 14, 261.

Paper 5/03775A
Received 13th June 1995
Accepted 20th July 1995

